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Abstract

Objective—This study examined associations between maternal lipid levels at mid-pregnancy 

and preterm delivery, medically indicated or spontaneous.

Design—Prospective cohort study.

Setting—Women were recruited from 52 clinics in five Michigan, U.S.A communities (1998–

2004).

Population—Pregnant women were enrolled at 15–27 weeks’ gestation and followed to delivery 

(n=3019).

Methods—A single blood sample was obtained at study enrollment. Blood lipids, i.e., total (TC), 

high-density lipoprotein (HDLc), low-density lipoprotein (LDLc) cholesterol, and triglycerides 

(TG), were measured on a subcohort (n=1,309).

Main Outcome Measures—There were 221 spontaneous, 100 medically indicated preterm 

deliveries and 988 term deliveries. Polytomous logistic regression models examined relations 

among cholesterol levels (Low: <10th %tile, Referent: 10th–<70th %tile, High: ≥70th %tile), 

quartiles of TG (Referent: first quartile) and delivery outcome (Referent: term).

Results—Odds of medically indicated preterm delivery were increased among women with low 

TC (adjusted odds ratio (aOR)= 2.04, 95% confidence interval (CI): 1.12,3.72), low HDLc 

(aOR=1.89, 95%CI: 1.04,3.42), or low LDLc (aOR=1.96, 95%CI: 1.09,3.54). Odds of 

spontaneous preterm delivery were increased among women with high TC (aOR=1.51, 95%CI: 

1.06,2.15), high LDLc (aOR=1.42, 95%CI: 0.99,2.04) or high TG (aOR=1.90, 95%CI: 1.21,2.97 

and aOR=1.72, 95%CI: 1.06,2.78 for third and fourth quartiles, respectively).
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Conclusions—Extremely low TC, HDLc and LDLc were associated with a modest increase in 

risk of medically indicated preterm delivery, while high TC, LDLc and TG modestly increased 

risk of spontaneous preterm delivery. Further research is needed to uncover explanations for these 

associations and to identify optimal ranges for maternal lipids.
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Introduction

The rate of preterm delivery has steadily increased in the USA for the past two decades, but 

has remained at ~12–13% since 2005 (1). Preterm delivery (PTD) accounts for ~69% of 

perinatal mortality (2), and a substantial proportion of long-term morbidity (3, 4). 

Socioeconomic and racial disparities continue to exist, with African-Americans having the 

highest rates of PTD (18%) (1). About 30–35% of PTD are medically indicated, with the 

remaining precipitated by spontaneous preterm labor or premature rupture of membranes 

(5).

Reasons for PTD remain unclear, although maternal vascular disturbances and infection/

inflammation have been implicated (5). Recently, studies have begun to examine maternal 

lipid profiles during pregnancy in relation to PTD. Maternal levels of total cholesterol (TC), 

high-density lipoprotein (HDLc), and low-density lipoprotein (LDLc) cholesterol, as well as 

triglycerides (TG), all increase in the 2nd and 3rd trimesters as a normal physiological 

response to pregnancy (6). Increased lipid levels contribute towards hormonal and 

nutritional support of a healthy pregnancy (7); however, extremely high levels may induce 

oxidative stress and have been linked to poorer birth outcomes in animal models (8) and 

atherosclerosis in human offspring (9, 10).

To date, seven studies have reported on maternal lipids in association with PTD risk. It was 

first noted that women on a low-cholesterol diet during pregnancy were significantly less 

likely to deliver preterm (11). Since then, studies have found that risk of spontaneous PTD 

was increased in association with higher levels of TC or TG and high non-HDLc (12–14), 

but decreased in association with high levels of HDLc (upper quartile) (15). One study also 

demonstrated that both low (< 10th percentile) and high (≥90th percentile) levels of TC were 

linked to increased odds of PTD; however, this study did not separate medically indicated 

and spontaneous PTD (16).

Previous work on the relation between maternal lipids and risk of PTD is limited by an 

almost exclusive focus on spontaneous PTD, as well as the use of differing cut-points for 

lipid levels, with most comparing “high” lipids to “lower” lipids despite suggestion of a U-

shape effect (16). The purposes of this study were to examine the shape of the relation 

between mid-pregnancy levels of maternal TC, HDLc, LDLc, and TG and risk of PTD, and 

then to determine whether low or high levels of these lipids were associated with odds of 

spontaneous and/or medically indicated PTD.
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Material and methods

Data from the Pregnancy Outcomes and Community Health (POUCH) Study were used to 

evaluate the aims. Pregnant women were enrolled during the 15th–27th week of pregnancy at 

52 clinics in five Michigan (USA) communities from 1998–2004 (17). Eligibility criteria 

included singleton pregnancy with no known chromosomal abnormality or birth defect, 

maternal serum alpha-fetoprotein (MSAFP) screen at 15–22 weeks, maternal age ≥ 15 years, 

no pre-existing diabetes mellitus, and proficiency in English. All women with high MSAFP 

levels (i.e. ≥ 2 multiples of the mean) were invited to participate because this biomarker has 

been previously associated with PTD (18). Women with normal MSAFP levels were 

stratified by race/ethnicity and randomly sampled into the cohort. Institutional review boards 

at Michigan State University, the Michigan Department of Community Health, and nine 

community hospitals approved the study.

The POUCH study enrolled 3038 women, and accomplished delivery follow-up for 3019 

women. A sub-cohort of women (n=1371) was selected to maximize resources for more 

detailed study (such as biomarker assays, placental pathology) and to permit sub-analyses of 

strata of particular interest. The sub-cohort included all women who delivered preterm (<37 

weeks), women who delivered at term but had high MSAFP levels, and a race-stratified 

sample of women with term deliveries and normal MSAFP levels, with oversampling of the 

African-American stratum. All analyses were weighted according to the probabilities of 

selection into the cohort and sub-cohort to remove bias due to oversampling from certain 

strata. Stored blood samples from 62 women in the sub-cohort lacked enough blood for lipid 

analyses, thus the final sample for this study included 1309 women (95% of the sub-cohort).

At enrollment, women signed consent forms, completed self-administered surveys and in-

person interviews with a study nurse, and had a non-fasting venous blood draw. Prenatal and 

labor and delivery records were abstracted and delivered placentas were collected and stored 

for pathology examination.

Blood samples were drawn at a mean gestational age of 22.4 weeks (range 15–27 weeks), 

centrifuged within 45 minutes of collection, aliquoted (1 ml), and stored at −80◦C until 

analyses. Samples were shipped on dry ice to the Nutrition Laboratory in the Department of 

Epidemiology at the University of Pittsburgh for lipid analyses. This laboratory has been 

included in the CDC-NHLBI Lipid Standardization Program since 1982, is CLIA certified 

and participates in CAP proficiency programs. TC (mg/dL) was determined using the 

enzymatic method of Allain et al. (19). HDLc (mg/dL) was measured directly using a 

homogeneous two-reagent method with materials obtained from Equal Diagnostics. LDLc 

(mg/dL) was calculated indirectly using the Friedewald equation: LDLc = TC– HDLc - 

0.2*(TG), except when total TG exceeded 400 mg/dL, in which case LDLc was measured 

directly using an automated spectrophotmetric assay (LDL Direct Liquid Select) from Equal 

Diagnostics (20). TG (mg/dL) were determined enzymatically using the Bucolo et. al. 

procedure (21). Duplicate samples with standards, control sera and serum calibrators were 

included in each run. The coefficients of variation ranged from 1.3 to 2.0%.
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Gestational age was calculated using the last menstrual period (LMP) unless it disagreed by 

more than two weeks with ultrasound conducted prior to 25 weeks gestation, in which case 

the ultrasound value was used. Accordingly, the LMP estimate was used in 76% of the entire 

cohort where the two estimates agreed and in 6% of the cohort where only LMP estimates 

were available. Ultrasound estimates were used for the remaining 18% of the cohort with 

absent or conflicting LMP estimates. PTD was defined as births before 37 weeks gestation. 

A physician and a labor and delivery nurse independently reviewed and abstracted data from 

prenatal and labor and delivery records to identify clinical circumstances leading to PTD. 

Spontaneous preterm labor was defined as intact membranes, regular contractions and 

cervical changes (≥2 cm dilation) in the absence of labor induction. Preterm premature 

rupture of membranes (PROM) was defined as rupture of membranes before or 

simultaneously with the initiation of spontaneous contractions. Women with either 

spontaneous labor or PROM leading to preterm delivery were combined into a single 

spontaneous PTD (sPTD) group for analyses. Medically indicated preterm delivery (Mi 

PTD) included women induced or given cesarean sections before onset of labor or PROM. 

Primary reasons for Mi PTD included gestational hypertensive disorders (n=39), intrauterine 

growth restriction (n=11), oligohydramnios (n=8), abruption (n=3), other maternal 

conditions including previous complications and placenta previa (n=23), and other fetal 

conditions including signs of fetal distress (n=16).

The enrollment interview and questionnaire provided information on demographics, medical 

and reproductive history, pre-pregnancy weight and height (body mass index (BMI) 

calculated as kg/m2), and smoking and alcohol intake during pregnancy. Maternal weight at 

the time of the blood draw was recorded. Medical record abstraction provided information 

on birthweight, preeclampsia/gestational hypertension, gestational diabetes, and placental 

abruption as previously described (22). Births were classified as small (<10th percentile), 

appropriate, or large (≥90th percentile) for gestational age using sex and gestational age-

specific birthweight cut-points (23). A single pathologist blinded to clinical information 

performed gross and microscopic evaluation of placentas. As previously described, these 

data were used to classify women as having histological chorioamnioitis and high vs. not 

high evidence of five placental vascular pathology constructs (24, 25). Placental evaluations 

were available for 1057 of the 1309 women with lipid levels.

Statistical analyses

Analyses were conducted with SAS (www.sas.com/statistics) version 9.2. Statistical 

significance was set at a two-sided alpha level of p<0.05. Sampling weights were used to 

remove bias due to oversampling of high MSAFP into the cohort and oversampling of high 

MSAFP, PTD, and African-Americans into the sub-cohort. Thus, weighted results account 

for the POUCH sampling scheme and should reflect the experience of the population of 

pregnant women that was initially sampled. Chi-squared testing was used to compare 

maternal characteristics by delivery status (term, sPTD Mi PTD). Lipid values were skewed, 

thus log-transformed values were used. Analysis of variance compared least square mean 

values of log transformed lipids by delivery status.
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Generalized additive models (PROC GAM) with cubic spline smoothing (degrees of 

freedom=3) were used to investigate the shapes of relations between maternal lipids and 

PTD, adjusted for maternal race, parity, and gestational age at time of the blood draw (26). 

Plots of relations were inspected to determine decile cut-points for lipid levels. Accordingly, 

women were categorized as having low (<10th), referent (10–<70th), and high (≥70th 

percentile) TC, HDLc, and LDLc values based on the distributions of these variables among 

women with normal MSAFP values who gave birth at term. Quartiles of TG were calculated 

based on women with normal MSAFP values who gave birth at term, and the lowest quartile 

was designated as referent.

The odds of sPTD and Mi PTD by lipid categorizations were estimated using logistic and 

polytomous logistic regression models. Since lipid values increase with gestational age and 

African-Americans are known to have more favorable lipid profiles than Whites, gestational 

age at the time of blood draw (continuous) and race (White/Others vs. African-American) 

were considered as covariates in all models (27, 28). Based on previous literature the 

following covariates were also considered: parity, pre-pregnancy BMI, maternal weight at 

blood draw, Medicaid status, marital status, education level, age, and smoking and/or 

alcohol use during pregnancy. Any variable that altered estimates of associations between 

lipid levels and PTD by more than 10% was retained in the adjusted models. Secondary 

analyses removed groups of women with higher risk of PTD based on pre-pregnancy BMI 

(<18.5 kg/m2, underweight women), diagnoses of preeclampsia/gestational hypertension, 

presence of histological chorioamnioitis, presence of placental vascular pathology, and birth 

size (small-for-gestational age) to assess whether their removal changed parameter estimates 

for relations between lipids and odds of PTD.

Results

Spontaneous PTD accounted for 7.4% and Mi PTD 3.3% of all deliveries. Women who 

delivered preterm were more likely to be African-American and enrolled in Medicaid 

compared to women who delivered at term (Table 1). The prevalence of preeclampsia/

gestational hypertension and small for gestational age births was also greater among Mi 

PTD vs. term deliveries.

Least square mean lipid values were adjusted for race, parity, and gestational week of blood 

draw and back-transformed from the log scale (Table 2). Lipid values for term deliveries 

were similar to those previously reported for second trimester measurements (6). 

Spontaneous PTD deliveries had significantly higher TC and TG values compared to term 

deliveries (p<0.05). Pre-pregnancy BMI was inversely but weakly correlated with TC (r=

−0.1, p<0.001), HDLc (r=−0.2, p<0.001) and LDLc (r=−0.1, p=0.002), and directly 

correlated with TG (r=0.2, p<0.001).

Results from the general additive modeling showed that the probability of PTD was greater 

than zero when log-transformed TC values were less than 5.18 or greater than 5.52, 

corresponding to the 10th and 70th percentiles of the distribution of TC among women with 

normal MSAFP values who gave birth at term (Figure 1). The shapes of the relations 

between HDLc or LDLc and PTD were similar and also suggested cut-points at the 10th and 
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70th percentiles (data not shown). In contrast, the general additive model for the relations 

between TG and PTD did not support a curvilinear term, but rather indicated a linear 

relation (Figure 2).

Odds of Mi PTD were increased among women with low TC, HDLc, or LDLc, while odds 

of sPTD were increased among women with high TC or LDLc (Table 3), as compared to 

women with referent cholesterol values. Associations were adjusted for maternal race, 

gestational week of blood draw, and parity. No other covariate, including maternal weight or 

pre-pregnancy BMI, met criteria for inclusion in the cholesterol models. TG levels in the 

upper two quartiles (first quartile as referent) were also associated with increased odds of 

sPTD. TG models additionally adjusted for maternal weight at blood draw.

Results were not appreciably altered by removing women who were underweight pre-

pregnancy (n=61), diagnosed with preeclampsia/gestational hypertension (n=92), displayed 

histological chorioamnioitis (n=128), had high ratings of placental vascular pathologies 

(n=120–435 depending on the construct), or gave birth to small-for-gestational age infants 

(n=141). Removal of women with PROM (n= 88) attenuated associations between sPTD 

and high TC (aOR=1.40, 95% CI: 0.91–2.16) and higher quartiles of TG (aOR=1.61, 95% 

CI: 0.91–2.83 and aOR=1.70, 95% CI: 0.94–3.07 for the third and fourth quartiles, 

respectively) to statistical non-significance, but the direction of effects remained the same. 

Removal of women whose blood draw occurred prior to 20 weeks of gestation also did not 

affect the reported associations.

Discussion

Our analyses revealed that PTD had a U-shaped relation with TC, HDLc, and LDLc, but a 

linear relation with TG. When PTD was categorized by clinical circumstances we observed 

that high TC and LDLc values were associated with increased odds of sPTD while 

extremely low TC, HDLc, and LDLc values were associated with increased odds of Mi 

PTD. Higher TG (third or fourth quartiles) were also linked to increased odds of sPTD/

PROM compared to low values. Removal of subgroups of women at higher risk for PTD did 

not appreciably alter findings.

A body of literature on lipids and PTD is accumulating; however, differences in gestational 

age at sampling, choice of referent group, and lipid cut-points challenge comparisons across 

studies. In the only previous study that reported a U-shape relation between TC and PTD, 

Edison et al. found that TC values in the lowest or highest 10th percentiles were associated 

with a 2–3 fold increase in odds of PTD (16). The range of TC values in the Edison study 

(93–435 mg/dl) were similar to those seen here (119–464 mg/dl). While “low” and “high” 

TC cutpoints differed slightly, our results are markedly similar and extend their findings by 

separately considering sPTD and MI PTD. Another investigation among 651 Greek women 

examined maternal lipids in relation to sPTD and Mi PTD separately (29). The Greek study 

found no associations between sPTD and linear increases in maternal TC, HDLc, LDLc, or 

TG, but a significantly increased risk of Mi PTD with increasing TC levels (29). These 

authors did not report on effects of low lipid values, nor did they provide information on the 

range of lipid values for their sample (29).
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Others have focused on maternal lipids in relation to sPTD only (12–15). A study of 651 

Canadian women examined odds of sPTD in relation to maternal lipids with the lowest 

quartile designated as referent (15). They found that increasing quartiles of TC and LDLc 

were unrelated to sPTD, but that being in the highest quartile of HDLc significantly 

decreased odds of sPTD (15). Once again, it is difficult to compare these results to ours as 

the lowest lipid values were used as the referent group. A series of studies by Catov et al. 

consistently showed that “dyslipidemia” was associated with more than twice the odds of 

sPTD (12–14). In these studies, dyslipidemia was defined as having elevated (>1 standard 

deviation above the mean) TC or TG (13, 14), or as having elevated (≥90th percentile vs. 

10–<90th percentile) non-HDL cholesterol (12). Catov et al. also showed that the 

dyslipidemia-sPTD association persisted in the presence or absence of inflammation (i.e. 

high C-reactive protein) (14), or of markers of the fibrinolytic cascade (i.e. elevated 

thrombin-antithombin III complex) (12). These findings parallel ours showing minimal 

impact of removing women with clinical complications or a particular set of placental 

pathologies. Taken together, the results of these studies with ours point towards the 

robustness of the association between elevated maternal lipids and sPTD in samples drawn 

from USA populations.

The mechanisms linking low or high maternal lipid levels and PTD risk remain poorly 

understood. Physiological increases in maternal TC, HDLc and LDLc are important for fetal 

development of cell membranes, steroid synthesis, cell proliferation and differentiation, and 

metabolic regulation, and increases in maternal TG provide a reservoir of fatty acids for fetal 

growth (7). We found that low lipids increased odds of Mi PTD, which is somewhat 

surprising given that high lipids (TC and TG) are associated with preeclampsia (30, 31). 

However, low third trimester maternal TC and LDLc levels have been associated with 

delivering intrauterine growth restricted infants (32, 33). We removed small-for-gestational 

age deliveries because that group had particularly low lipid levels; however, the associations 

among low TC and LDLc and Mi PTD remained. It is possible that abnormal fetal 

development resulting in suboptimal growth (birthweight in the lower range of being 

appropriate-for-gestational age) and Mi PTD may also reduce the stimulus for cholesterol 

synthesis during pregnancy leading to our observed associations. Evidence among non-

pregnant adults suggest that serum lipid levels are significantly lower during acute illness 

(34), thus low cholesterol levels may also mark presence of a medical condition that is the 

underlying cause of Mi PTD. On the opposite end, we saw that high lipids increased odds of 

sPTD. High lipids have been associated with oxidative stress and systemic inflammation, 

and may also be related to placental dysfunction or microvascular injuries that lead to sPTD 

(12, 35). Importantly, results remained after removing women with established risk factors 

for PTD (such as underweight pre-pregnancy, preeclampsia/gestational hypertension, 

histological chorioamnioitis, placental vascular pathology, and small-for-gestational age 

deliveries), indicating that atypical maternal lipid levels may mark alternative pathways to 

sPTD or Mi PTD that are not well described.

Several limitations should be noted. Similar to previous studies on pregnancy lipids and 

PTD (12, 14–16, 29), maternal lipids were sampled only once in pregnancy, thus we were 

unable to describe the trajectory of lipid levels or compare pre-pregnancy and pregnancy 

levels. It is important to note that our results were not affected by timing of the blood draw 
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as associations were unchanged by restricting analyses only to women whose lipids were 

measured in the 20–27th week of gestation (data not shown). Also similar to previous reports 

(12–15), our participants were not fasted, thus lipid levels may have been influenced by the 

woman’s last meal. However, studies comparing fasting versus non-fasting lipid levels show 

minimal differences (<5%) for TC, HDLc, and LDLc values, while TG are ~15% higher in 

the non-fasted state (36, 37). Extra variation induced by using non-fasted lipid levels should 

affect women with term and preterm deliveries similarly and thus have a non-differential 

effect, most likely attenuating results. It is surprising that TC and LDLc values were 

inversely, albeit weakly, correlated with pre-pregnancy BMI given that 

hypercholesterolemia is associated with overweight/obesity (38). It is possible that 

pregnancy-related increases in lipid levels disrupted expected correlations with pre-

pregnancy BMI. Our internal cut-points for low and high lipid levels may not generalize to 

other populations. Finally, the use of last menstrual period to measure gestational age at 

delivery may be considered a limitation. However, we used a standard protocol of only 

using last menstrual period dating if it agreed within two weeks of ultrasound dating, thus 

we are reasonably confident in our assessment of gestational age.

Despite these limitations our results add to the existing literature on maternal lipids and 

PTD. Nonparametric modeling allowed us to detect a U-shape relationship between TC, 

HDLc, and LDLc and risk of PTD, perhaps reconciling inconsistencies across studies that 

focused on only one end of the continuum. Unlike most previous literature on lipids and 

PTD (11–16), we also considered clinical subtypes, and were able to shed more light on a 

previously documented U-shape relation between TC and PTD (16). Modeling each lipid 

individually with PTD also provided greater specificity than past studies which combined 

women with high TC or high TG (13, 14). As clinicians move towards measuring more 

biomarkers during pregnancy to assess risk of PTD, lipids may turn out to be a useful 

component of a biomarker risk profile.

More research is needed to identify the biological mechanisms leading to increased risk of 

PTD and to determine healthy ranges for lipids during pregnancy that optimize birth 

outcomes. Ideally, both pre-pregnancy and pregnancy lipid profiles should be measured in 

order to determine if one or both are associated with risk of PTD. Future studies should also 

measure markers of inflammation and/or oxidative stress to determine whether high lipids 

are related to these sPTD pathways, as well as other indicies of placental/fetal health to 

better evaluate mechanisms linking low lipids to Mi PTD.

Conclusions

In conclusion, low lipid values (TC, HDLc, and LDLc) were uniquely associated with a 

modestly increased risk of medically indicated preterm delivery while high lipids (TC, 

LDLc, and TG) were associated with an increased risk of spontaneous preterm delivery. 

Given that one in six women in the United States are dyslipidemic, it is important to more 

fully understand the impact of maternal lipids on pregnancy outcomes (39).
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Figure 1. 
Probability of preterm delivery by levels of log-transformed maternal total cholesterol 

measured at mid-pregnancy. General additive model fitted using cubic spline smoothing and 

adjusted for maternal race (White/Other vs. Black), parity (nulliparous vs. parous), and 

gestational week of blood draw (continuous). Pregnancy Outcomes and Community Health 

Study, 1998–2004.
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Figure 2. 
Probability of preterm delivery by levels of log-transformed maternal triglycerides measured 

at mid-pregnancy. Linear model adjusted for maternal race (White/Other vs. Black), parity 

(nulliparous vs. parous), and gestational week of blood draw (continuous). Pregnancy 

Outcomes and Community Health Study, 1998–2004.
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Table 1

Participant Characteristics by Delivery Status (n (Weighted Column Percent)), Pregnancy Outcomes and 

Community Health Study, 1998–2004

Term
(n=988)

sPTD
(n=221)

Mi PTD
(n=100)

Chi-squared
p-value*

Race

  White/Other 553 (76.4) 148 (66.3) 71 (68.9) <0.001

  African-American 435 (23.6) 73 (33.7) 29 (31.1)

Paritya

  Nulliparous 409 (41.0) 101 (46.5) 38 (37.9) 0.27

  Parous 579 (59.0) 119 (53.5) 62 (62.1)

Living Arrangementb

  Live alone 351 (26.5) 70 (32.6) 27 (27.0) 0.17

  Live with partner/spouse 636 (73.5) 149 (67.4) 73 (73.0)

Medicaid

  Yes 558 (48.2) 129 (58.4) 52 (51.9) 0.02

Age

  ≤19 years 151 (12.4) 35 (16.5) 12 (11.6)

  20–29 years 572 (57.6) 125 (56.9) 60 (59.8) 0.52

  ≥30 years 265 (30.0) 61 (26.6) 28 (28.6)

Education

  < High School 223 (18.4) 51 (23.6) 24 (25.3)

  High School 277 (26.9) 66 (30.0) 28 (27.5) 0.09

  > High School 488 (54.8) 104 (46.4) 48 (47.2)

Pre-pregnancy BMI

  ≤18.4 kg/m2 44 (3.6) 14 (6.8) 3 (2.7)

  18.5–24.9 kg/m2 439 (46.9) 107 (47.9) 40 (41.4) 0.17

  25–29.9 kg/m2 226 (23.3) 44 (20.5) 20 (20.6)

  ≥30 kg/m2 279 (26.1) 56 (24.8) 37 (35.4)

Smoking in pregnancy

  Yes 274 (27.2) 67 (30.9) 28 (26.2) 0.52

Gestational Diabetes

  Yes 46 (5.5) 12 (4.7) 7 (6.6) 0.81

Hypertension

None 901 (91.1) 205 (92.8) 59 (58.0)

  PE/Gestational Hypertension 56 (5.8) 4 (1.9) 32 (33.5) <0.001

  Chronic Hypertension 31 (3.0) 12 (5.3) 9 (8.5)

Size for Gestational Agec

  Small (<10th percentile) 121 (9.8) 2 (0.8) 18 (17.8)

  Appropriate 766 (77.6) 187 (84.3) 72 (73.6) <0.001

  Large (≥90th percentile) 100 (12.6) 32 (14.9) 9 (8.6)

Timing of Blood Draw
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Term
(n=988)

sPTD
(n=221)

Mi PTD
(n=100)

Chi-squared
p-value*

  <20 weeks gestation 148 (15.1) 47 (20.4) 18 (18.6) 0.36

  20–27 weeks gestation 840 (84.8) 174 (79.6) 82 (81.4)

BMI=Body mass index; Mi PTD= Medically indicated preterm delivery; PE=Preeclampsia; sPTD=Spontaneous preterm delivery

*
P-values indicated significant differences among Term, sPTD, and MI PTD delivery groups

a
n=1 woman missing information on parity

b
n=3 women missing information on living arrangement

c
n=2 women missing information on size for gestational age
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